

First Semester Examination Academic Session 2020/2021

February 2021

KFT431 – Physical Chemistry III

[Kimia Fizik III]

Duration : 2 hours [Masa : 2 jam]

Please check that this examination paper consists of **<u>EIGHT (8)</u>** pages of printed material before you begin the examination.

Instructions:

This paper has FIVE (5) questions in Sections A and B.

Please answer FOUR (4) questions only. Answer TWO (2) questions from Section A and any TWO (2) questions from Section B.

If a candidate answers more than four questions only the first four questions in the answer sheet will be graded.

Appendix: Fundamental constants in Physical Chemistry

...2/-

SECTION A

Answer **ALL** questions.

1. (a) Consider a particle moving in a 1-D box, the wavefunction, ψ is given by:

$$\psi = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$$

where \boldsymbol{L} is the dimension of the box and n is the quantum number.

- The quantum number for the particle-in-a-box system cannot be zero.
 Explain this statement.
- (ii) Starting with the operators for position and momentum, interpret the commutability of these two operators for this system and its implication.

(13 marks)

- (b) A system comprising of one mole of distinguishable and non-interacting molecules has a two-fold degenerate ground energy level, a two-fold degenerate excited energy level at 1237 cm⁻¹ and a nondegenerate excited energy level at 2010 cm⁻¹ at 300 K and 1 atm. Calculate
 - (i) the partition function, q.
 - (ii) the number of molecules in each energy level.
 - (iii) the change in the ratio of the molecules in the first excited energy level with respect to the ground energy level when the temperature increases by 10-fold.
 - (iv) the total energy, E.
 - (v) the partition function when $T = \infty$.

(12 marks)

...3/-

2. (a) The competitive inhibition can be described as follows: (CLO1)

$$E + S \xrightarrow{k_1} ES$$
$$ES \xrightarrow{k_2} E + P$$
$$E + I \xrightarrow{k_3} EI$$

In this mechanism, I, is the inhibitor, EI is the enzyme-inhibitor complex and the other species are identical to those employed in the standard enzyme kinetic scheme.

(i) Demonstrate that the rate of product formation is (C3)

$$\mathbf{r} = \frac{\mathbf{k}_{2}[\mathbf{S}][\mathbf{E}]_{o}}{[\mathbf{S}] + \mathbf{K}_{m} \left(1 + \frac{[\mathbf{I}]}{\mathbf{K}_{i}}\right)}$$

where
$$K_i = \frac{[E][I]}{[EI]}$$
.

(ii) Derive the Lineweaver-Burk equation if a new apparent Michaelis-Menten constant is defined as

$$\mathbf{K}_{\mathrm{m}}^{*} = \mathbf{K}_{\mathrm{m}} \left(1 + \frac{[\mathbf{I}]}{\mathbf{K}_{\mathrm{i}}} \right)$$

(10 marks)

(b) The following data is collected from an enzyme-catalysed reaction:

Concentration of substrate, [S]/mol dm ⁻³	Rate, υ/mol m ⁻³ s ⁻¹		
2.5 x 10 ⁻⁴	2.3 x 10 ⁻⁴		
5.0 x 10 ⁻⁴	7.8 x 10 ⁻⁴		

The concentration of the enzyme is 2 g dm⁻³ and its molecular weight is 50,000 g mol⁻¹. Calculate the Michaelis constant, K_m , and the limiting rate, V, for this reaction.

(5 marks)

...4/-

<u>SULIT</u>

(c) The Eyring constant, k_r , equation is given as

$$k_{\rm r} = \left(\frac{k_{\rm B}T}{h}\right) \kappa_{\rm c}^{\neq}$$

where $\kappa_{^{\neq}c}$ is the equilibrium constant, k_{B} is the Boltzmann constant and T is temperature.

Starting from the equation:

$$\frac{d\ln\kappa_{\rm c}^{\neq}}{dT} = \frac{\Delta^{\neq}U^{\rm o}}{RT^2}$$

Derive

$$\mathbf{E}_{\mathbf{a}} = \Delta^{\neq} \mathbf{H}^{\mathbf{o}} + \mathbf{RT}(1 - \Delta^{\neq} \mathbf{n})$$

where $\Delta^{\neq} U^o$ is the increase in internal energy in passing from the initial state to the activated state, E_a is the experimental activation energy, $\Delta^{\neq} H^o$ is the enthalpy change and Δn is the change in the number of molecules when the activated complex is formed from the reactants.

(10 marks)

...5/-

SECTION B

Answer any TWO (2) questions

3. Consider a particle moving in a 2-D box of dimensions a and b. The wavefunction, ψ , is given by

$$\psi = \left(\frac{4}{ab}\right)^{\frac{1}{2}} \sin \frac{n_x \pi x}{a} \sin \frac{n_y \pi y}{b}$$

(a) Starting from the Hamiltonian operator, show that the expression of energy for

this system E =
$$\frac{\hbar^2}{8m} \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} \right)$$

(10 marks)

- (b) If the box is a square,
 - (i) prepare a table showing the quantum numbers, the energy levels and the degree of degeneracy for each energy level for the energy level up to $9E_1$, where E_1 is the ground state energy.
 - (ii) determine the number of energy level and state from the answers obtained from (b)(i).

(15 marks)

4. (a) The molecular structure of vitamin A is shown in figure below. Its conjugated π -electron system can be described using the particle-in-a-box system.

Given that the average bond distance, $\ell_c = 140$ pm and the penetration term, p = 140 pm, determine the wavelength corresponding to the first transition.

(10 marks)

...6/-

<u>SULIT</u>

(b) Starting from the expression of entropy, S, for a distinguishable system:

$$S_{dis} = k \left[N \ln \frac{q}{N} + \frac{E}{kT} + N \ln N \right]$$

- (i) derive the expression for Helmholtz free energy, A.
- (ii) Consider a system of 1 mole of CO (g) molecules. The internuclear distance is 1.128 × 10⁻¹⁰ m, the vibrational wavenumber is 2170 cm⁻¹ and the ground electronic level is nondegenerate. Calculate the total free energy of 1 mole of CO (g) molecules at 298 K and pressure 1 bar.

Given:

$$q_{t} = \left(\frac{2\pi mkT}{h^{2}}\right)^{3/2} V$$
$$q_{r} = \frac{8\pi^{2} lkT}{\sigma h^{2}}$$
$$q_{v} = \frac{1}{1 - e^{-hv/kT}}$$

(15 marks)

5. Using the Transition State Theory, calculate the rate constant for the reaction:

$$H + D_2 \rightarrow HD + D$$

The classical barrier height or the maximum path of the reaction, E_o , is 40.2 kJ mol⁻¹ at 327 °C. The transition-state structure is an unsymmetric, linear arrangement of three atoms with an internuclear distance of 9.30 x 10⁻¹¹ m. The HD₂ activated complex has vibrational wavenumbers of 1762 cm⁻¹ (symmetric bending) and 694 cm⁻¹ (doubly degenerate). Assume that the internuclear distance of H-D in the activated complex is equal to the internuclear distance of D-D.

 D_2 has only one vibrational mode and its vibrational wavenumber is 3112 cm⁻¹. The D_2 internuclear distance is 7.41 x 10⁻¹¹ m. The electronic degeneracies are 2 for H and HD₂ and unity for D_2 , respectively.

...7/-

Given:

$$q_{t} = \left(\frac{2\pi m kT}{h^{2}}\right)^{3/2} V$$
$$q_{r} = \frac{8\pi^{2} I kT}{\sigma h^{2}}$$
$$q_{v} = \frac{1}{1 - e^{-hv/kT}}$$

(25 marks)

...8/-

<u>SULIT</u>

APPENDIX

UNIVERSITI SAINS MALAYSIA School of Chemical Sciences

General data and fundamental constants

Quantity			Symbol		Value	Power of	ten	Units	
Speed of light	ght		С		2.99792458	10 ⁸		m s ⁻¹	
Elementary	/ charge	е			1.60218	10 ⁻¹⁹		С	
Faraday constant			$F = N_A e$		9.64853	104		C mol ⁻¹	
Boltzmann constant			k		1.38065	10 ⁻²³		J K ⁻¹	
Mass of electron			m _e		9.10938356	10 ⁻³¹		kg	
Gas constant		$R = N_A k$		8.31447			J K ⁻¹ mol ⁻¹		
			-	8.31447	10-2		L bar K ⁻¹ mol ⁻¹		
					8.20574	10-2		L atm K ⁻¹ mol ⁻¹	
					6.23637	10		LTorr K ⁻¹ mol ⁻¹	
Planck constant			h		6.62608	10 ⁻³⁴		Js	
			ћ = h/2п		1.05457	10 ⁻³⁴		Js	
Avogadro d	Avogadro constant			N _A	6.02214	10 ²³		mol ⁻¹	
Standard a fall	Standard acceleration of free fall		g		9.80665			m s ⁻²	
Conversion factors		Useful relation			Unit relations				
1 eV 1.60218 x 10 ⁻¹⁹ 96.485 kJ mol ⁻¹					803 RT/F 91 V at 25 °C	Energy		1 J = 1 kg m² s⁻² = 1 A V s	
	8065.5 c			01000		Force		$1 \text{ N} = 1 \text{ kg m s}^{-2}$	
1 cal	4.184 J							<u> </u>	
	1.013 ba	.325 kPa				Pressure	1 Pa = 1 N m ⁻² = 1 kg m ⁻¹ s ⁻²		
1 atm									
1 cm ⁻¹	760 Torr 1.9864 x 10 ⁻²³ J				Charge	$= 1 \text{ Jm}^{-3}$			
1 Å	10 ⁻¹⁰ m	(10 J			Charge Potential	1 C = 1 A s $1 V = 1 J C^{-1}$			
1 L atm	101.325 J					difference	$= 1 \text{ kg m}^2 \text{ s}^{-3} \text{ A}^{-1}$		
Atomic Wei		-					1 -		
AI	26.98	С		12.01	Fe	55.85	Р	30.97	
Sb	121.76	Cs		132.92	Kr	83.80	K	39.098	
Ar	39.95	CI		35.45	Pb	207.2	Ag	g 107.87	
As	74.92	Cr	51.996		Li	6.941	Na	a 22.99	
Ba	137.33	Co		58.93	Mg	24.31	S	32.066	
Be	9.012	Cu	63.55		Mn	54.94	Sr	า 118.71	
Bi	208.98	F	18.998		Hg	200.59	W	/ 183.84	
В	10.81	Au	196.97		Ne	20.18	Xe	e 131.29	
Br	79.90	He	4.002		Ni	58.69	Zr	า 65.39	
Cd	112.41	Н	1.008		N	14.01			
Ca	40.078	I	126.90		0	15.999			

-0000000-