First Semester Examination
Academic Session 2020/2021

February 2021
KFT431 - Physical Chemistry III
[Kimia Fizik III]
Duration : 2 hours
[Masa : 2 jam]

Please check that this examination paper consists of EIGHT (8) pages of printed material before you begin the examination.

Instructions:

This paper has FIVE (5) questions in Sections A and B.
Please answer FOUR (4) questions only. Answer TWO (2) questions from Section A and any TWO (2) questions from Section B.

If a candidate answers more than four questions only the first four questions in the answer sheet will be graded.

Appendix: Fundamental constants in Physical Chemistry

SECTION A

Answer ALL questions.

1. (a) Consider a particle moving in a 1-D box, the wavefunction, ψ is given by:

$$
\psi=\sqrt{\frac{2}{\mathrm{~L}}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}
$$

where L is the dimension of the box and n is the quantum number.
(i) The quantum number for the particle-in-a-box system cannot be zero. Explain this statement.
(ii) Starting with the operators for position and momentum, interpret the commutability of these two operators for this system and its implication.
(13 marks)
(b) A system comprising of one mole of distinguishable and non-interacting molecules has a two-fold degenerate ground energy level, a two-fold degenerate excited energy level at $1237 \mathrm{~cm}^{-1}$ and a nondegenerate excited energy level at $2010 \mathrm{~cm}^{-1}$ at 300 K and 1 atm . Calculate
(i) the partition function, q.
(ii) the number of molecules in each energy level.
(iii) the change in the ratio of the molecules in the first excited energy level with respect to the ground energy level when the temperature increases by 10 -fold.
(iv) the total energy, E .
(v) the partition function when $\mathrm{T}=\infty$.
-3-
2. (a) The competitive inhibition can be described as follows: (CLO1)

$$
\begin{aligned}
& \mathrm{E}+\mathrm{S} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{ES} \\
& \mathrm{ES} \xrightarrow[\mathrm{k}_{-3}]{\mathrm{k}_{2}} \mathrm{E}+\mathrm{I} \\
& \mathrm{E}+\mathrm{I} \underset{\mathrm{k}_{3}}{\rightleftharpoons} \mathrm{EI}
\end{aligned}
$$

In this mechanism, I, is the inhibitor, EI is the enzyme-inhibitor complex and the other species are identical to those employed in the standard enzyme kinetic scheme.
(i) Demonstrate that the rate of product formation is (C3)

$$
\mathrm{r}=\frac{\mathrm{k}_{2}[\mathrm{~S}][\mathrm{E}]_{\mathrm{o}}}{[\mathrm{~S}]+\mathrm{K}_{\mathrm{m}}\left(1+\frac{[\mathrm{I}]}{\mathrm{K}_{\mathrm{i}}}\right)}
$$

where $\mathrm{K}_{\mathrm{i}}=\frac{[\mathrm{E}][\mathrm{I}]}{[\mathrm{EI}]}$.
(ii) Derive the Lineweaver-Burk equation if a new apparent Michaelis-Menten constant is defined as

$$
\mathrm{K}_{\mathrm{m}}^{*}=\mathrm{K}_{\mathrm{m}}\left(1+\frac{[\mathrm{II}]}{\mathrm{K}_{\mathrm{i}}}\right)
$$

(10 marks)
(b) The following data is collected from an enzyme-catalysed reaction:

Concentration of substrate, $[\mathrm{S}] / \mathrm{mol} \mathrm{dm}^{-3}$	Rate, $\mathrm{v} / \mathrm{mol} \mathrm{m}^{-3} \mathrm{~s}^{-1}$
2.5×10^{-4}	2.3×10^{-4}
5.0×10^{-4}	7.8×10^{-4}

The concentration of the enzyme is $2 \mathrm{~g} \mathrm{dm}^{-3}$ and its molecular weight is
50,000 $\mathrm{g} \mathrm{mol}{ }^{-1}$. Calculate the Michaelis constant, K_{m}, and the limiting rate, V , for this reaction.
(c) The Eyring constant, k_{r}, equation is given as

$$
\mathrm{k}_{\mathrm{r}}=\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}}\right) \kappa_{\mathrm{c}}^{\neq}
$$

where K^{\neq}is the equilibrium constant, K_{B} is the Boltzmann constant and T is temperature.

Starting from the equation:

$$
\frac{\mathrm{d} \ln \kappa_{\mathrm{c}}^{\neq}}{\mathrm{dT}}=\frac{\Delta^{\neq} \mathrm{U}^{\mathrm{o}}}{\mathrm{RT}^{2}}
$$

Derive

$$
\mathrm{E}_{\mathrm{a}}=\Delta^{\neq} \mathrm{H}^{0}+\mathrm{RT}\left(1-\Delta^{\neq} \mathrm{n}\right)
$$

where $\Delta^{\neq} \mathrm{U}^{0}$ is the increase in internal energy in passing from the initial state to the activated state, E_{a} is the experimental activation energy, $\Delta^{\neq} \mathrm{H}^{\mathrm{o}}$ is the enthalpy change and $\Delta \mathrm{n}$ is the change in the number of molecules when the activated complex is formed from the reactants.

SECTION B

Answer any TWO (2) questions

3. Consider a particle moving in a 2-D box of dimensions a and b . The wavefunction, ψ, is given by

$$
\psi=\left(\frac{4}{\mathrm{ab}}\right)^{\frac{1}{2}} \sin \frac{\mathrm{n}_{\mathrm{x}} \pi \mathrm{x}}{\mathrm{a}} \sin \frac{\mathrm{n}_{\mathrm{y}} \pi \mathrm{y}}{\mathrm{~b}}
$$

(a) Starting from the Hamiltonian operator, show that the expression of energy for this system $\mathrm{E}=\frac{\hbar^{2}}{8 \mathrm{~m}}\left(\frac{\mathrm{n}_{\mathrm{x}}{ }^{2}}{a^{2}}+\frac{\mathrm{n}_{\mathrm{y}}{ }^{2}}{b^{2}}\right)$
(b) If the box is a square,
(i) prepare a table showing the quantum numbers, the energy levels and the degree of degeneracy for each energy level for the energy level up to $9 \mathrm{E}_{1}$, where E_{1} is the ground state energy.
(ii) determine the number of energy level and state from the answers obtained from (b)(i).
(15 marks)
4. (a) The molecular structure of vitamin A is shown in figure below. Its conjugated π electron system can be described using the particle-in-a-box system.

Given that the average bond distance, $\ell_{c}=140 \mathrm{pm}$ and the penetration term, $\mathrm{p}=$ 140 pm , determine the wavelength corresponding to the first transition.
(b) Starting from the expression of entropy, S, for a distinguishable system:

$$
S_{\text {dis }}=k\left[N \ln \frac{q}{N}+\frac{E}{k T}+N \ln N\right]
$$

(i) derive the expression for Helmholtz free energy, A.
(ii) Consider a system of 1 mole of $\mathrm{CO}(\mathrm{g})$ molecules. The internuclear distance is $1.128 \times 10^{-10} \mathrm{~m}$, the vibrational wavenumber is $2170 \mathrm{~cm}^{-1}$ and the ground electronic level is nondegenerate. Calculate the total free energy of 1 mole of $\mathrm{CO}(\mathrm{g})$ molecules at 298 K and pressure 1 bar.

Given:

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{t}}=\left(\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{3 / 2} \mathrm{~V} \\
& \mathrm{q}_{\mathrm{r}}=\frac{8 \pi^{2} \mathrm{IkT}}{\sigma \mathrm{~h}^{2}} \\
& \mathrm{q}_{\mathrm{v}}=\frac{1}{1-\mathrm{e}^{-\mathrm{hv} / \mathrm{kT}}}
\end{aligned}
$$

5. Using the Transition State Theory, calculate the rate constant for the reaction:

$$
\mathrm{H}+\mathrm{D}_{2} \rightarrow \mathrm{HD}+\mathrm{D}
$$

The classical barrier height or the maximum path of the reaction, E_{0}, is $40.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $327{ }^{\circ} \mathrm{C}$. The transition-state structure is an unsymmetric, linear arrangement of three atoms with an internuclear distance of $9.30 \times 10^{-11} \mathrm{~m}$. The HD_{2} activated complex has vibrational wavenumbers of $1762 \mathrm{~cm}^{-1}$ (symmetric bending) and $694 \mathrm{~cm}^{-1}$ (doubly degenerate). Assume that the internuclear distance of H-D in the activated complex is equal to the internuclear distance of D-D.
D_{2} has only one vibrational mode and its vibrational wavenumber is $3112 \mathrm{~cm}^{-1}$. The D_{2} internuclear distance is $7.41 \times 10^{-11} \mathrm{~m}$. The electronic degeneracies are 2 for H and HD_{2} and unity for D_{2}, respectively.

Given:

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{t}}=\left(\frac{2 \pi \mathrm{mkT}}{\mathrm{~h}^{2}}\right)^{3 / 2} \mathrm{~V} \\
& \mathrm{q}_{\mathrm{r}}=\frac{8 \pi^{2} \mathrm{IkT}}{\sigma \mathrm{~h}^{2}} \\
& \mathrm{q}_{\mathrm{v}}=\frac{1}{1-\mathrm{e}^{-\mathrm{hv} / \mathrm{kT}}}
\end{aligned}
$$

(25 marks)

APPENDIX

UNIVERSITI SAINS MALAYSIA

School of Chemical Sciences

General data and fundamental constants

Quantity	Symbol	Value	Power of ten	Units
Speed of light	c	2.99792458	10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	1.60218	10^{-19}	C
Faraday constant	$F=N_{A} e$	9.64853	10^{4}	$\mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	1.38065	10^{-23}	$\mathrm{J} \mathrm{K}^{-1}$
Mass of electron	m_{e}	9.10938356	10^{-31}	kg
Gas constant	$R=N_{A} K$	8.31447		$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
		8.31447	10^{-2}	L bar K ${ }^{-1} \mathrm{~mol}^{-1}$
		8.20574	10^{-2}	$\mathrm{L} \operatorname{atm~K} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
		6.23637	10	LTorr K ${ }^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	6.62608	10^{-34}	J s
	$\hbar=h / 2 \pi$	1.05457	10^{-34}	J s
Avogadro constant	N_{A}	6.02214	10^{23}	mol^{-1}
Standard acceleration of free fall	g	9.80665		$\mathrm{m} \mathrm{s}^{-2}$

Conversion factors		Useful relation		Unit relations
$1 \mathrm{eV}$	$\begin{aligned} & 1.60218 \times 10^{-19} \mathrm{~J} \\ & 96.485 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{gathered} 2.303 \mathrm{RT} / \mathrm{F} \\ =0.0591 \mathrm{~V} \text { at } 25^{\circ} \mathrm{C} \end{gathered}$	Energy	$\begin{aligned} & 1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \\ & =1 \mathrm{AVs} \end{aligned}$
	$8065.5 \mathrm{~cm}^{-1}$		Force	$1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$
1 cal	4.184 J			
1 atm	$\begin{aligned} & 1.013 \text { bar } \\ & 101.325 \mathrm{kPa} \\ & 760 \text { Torr } \\ & \hline \end{aligned}$		Pressure	$\begin{aligned} & 1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2} \\ & =1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2} \\ & =1 \mathrm{Jm}^{-3} \end{aligned}$
$1 \mathrm{~cm}^{-1}$	$1.9864 \times 10^{-23} \mathrm{~J}$		Charge	$1 \mathrm{C}=1 \mathrm{As}$
$\begin{aligned} & 1 \AA \AA \\ & 1 \mathrm{~L} \text { atm } \end{aligned}$	$\begin{aligned} & 10^{-10} \mathrm{~m} \\ & 101.325 \mathrm{~J} \end{aligned}$		Potential difference	$\begin{aligned} & 1 \mathrm{~V}=1 \mathrm{JC}^{-1} \\ & =1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1} \end{aligned}$

Atomic Weights

Al	26.98	C	12.01	Fe	55.85	P	30.97
Sb	121.76	Cs	132.92	Kr	83.80	K	39.098
Ar	39.95	Cl	35.45	Pb	207.2	Ag	107.87
As	74.92	Cr	51.996	Li	6.941	Na	22.99
Ba	137.33	Co	58.93	Mg	24.31	S	32.066
Be	9.012	Cu	63.55	Mn	54.94	Sn	118.71
Bi	208.98	F	18.998	Hg	200.59	W	183.84
B	10.81	Au	196.97	Ne	20.18	Xe	131.29
Br	79.90	He	4.002	Ni	58.69	Zn	65.39
Cd	112.41	H	1.008	N	14.01		
Ca	40.078	I	126.90	O	15.999		

