

Second Semester Examination 2020/2021 Academic Session

July 2021

KFT332 – Physical Chemistry II

Duration: 2 hours

Please check that this examination paper consists of **<u>EIGHT</u> (8)** pages of printed material before you begin the examination.

Instructions:

This paper has <u>FIVE (5)</u> questions in SECTIONS A and B. Answer all <u>THREE (3)</u> questions from SECTION A and at least <u>ONE (1)</u> question from SECTION B.

Answer each question on a new page.

If a candidate answers more than four questions, only the answers to the first four questions in the answer sheet will be graded.

Appendix: Fundamental constants in physical chemistry.

...2/-

SECTION A

1. (a) Determine ΔS if one mole of N₂(g) is expanded from 20.0 L at 273 K to 300 L at 400 K. Assume that the molar heat capacity at constant pressure, \overline{C}_P , is 29.4 J K⁻¹ mol⁻¹ and is independent of temperature.

(5 marks)

- (b) Show that
 - (i) $\Delta \overline{S} = \overline{C}_P \ln \frac{T_2}{T_1} R \ln \frac{P_2}{P_1}$ for the change of one mole of an ideal gas from T₁, P₁ to T₂, P₂, assuming that \overline{C}_P is independent of temperature.
 - (ii) dH = TdS + VdP starting from H(S, P).
 - (iii) $\left(\frac{\partial T}{\partial P}\right)_{H} = -\frac{1}{C_{P}}\left(\frac{\partial H}{\partial P}\right)_{T}$ starting from H(T, P).

(15 marks)

(c) Starting from H = U + PV, prove that the Joule-Thomson coefficient can be written as

$$\mu_{\rm JT} = \left(\frac{\partial T}{\partial P}\right)_{\rm H} = -\frac{1}{C_{\rm P}} \left[\left(\frac{\partial U}{\partial V}\right)_{\rm T} \left(\frac{\partial V}{\partial P}\right)_{\rm T} + \left(\frac{\partial (PV)}{\partial P}\right)_{\rm T} \right]$$

(5 marks)

 (a) Based on a graphical method, determine the partial molar volume of ZnCl₂ in 1 molal ZnCl₂ solution using the following data:

[ZnCl ₂]/wt.%	2	6	10	14	18
Density/g cm ⁻³	1.0167	1.0532	1.0891	1.1275	1.1665

(8 marks)

(b) The vapour pressure of benzene (C_6H_6) and toluene (C_7H_8) have the following values in the temperature range between their boiling points at 1 bar:

T/ºC	79.4	88	94	100	110
P _{benzene} /bar	1.000	1.285	1.526	1.801	-
P _{toluene} /bar	-	0.508	0.616	0.742	1.000

- (i) Determine the compositions of the vapour and liquid phases at each temperature.
- (ii) Sketch the boiling point diagram.
- (iii) If a solution containing 0.5 mole fraction of benzene and 0.5 mole fraction of toluene is heated to a specific temperature, the first vapour bubble will appear. Determine the temperature when the first vapour bubble appears and composition of the vapour.

(12 marks)

(c) A container has a double wall where the wall cavity is filled with CO_2 at 298 K and 1 atm. When the container is filled with liquid nitrogen at 100 K, the CO_2 will freeze so that the wall cavity has a mixture of solid and vapour CO_2 at sublimation pressure. Assume that the data for CO_2 at 100 K is not available, but it is known that the sublimation pressure, $P_{sublimation}$, and enthalpy of sublimation, $\Delta H_{sublimation}$, for CO_2 at -90 °C are 38.1 kPa and 574.5 kJ kg⁻¹, respectively. Determine the pressure in the wall cavity at 100 K.

(5 marks)

3. (a) The following emf values, E, were obtained at 25 °C for the cell at various molalities, m, of LiCI:

Pt, H ₂ (1 bar) LiOH(0.01m), LiCl(m) AgCl(s) Ag							
m/mol kg ⁻¹	0.01	0.02	0.05	0.10	0.20		
E/V	1.0498	1.0318	1.0076	0.9888	0.9696		

Given that $E^{o}_{AgCl/Ag}$ = 0.2224 V, calculate the ionic product of water, K_w.

(15 marks)

(b) In the Debye-Hückel limiting law, the relationship between the activity coefficient, γ_{\pm} , and the ionic strength, I, of a dilute solution is

$$-\ln\gamma_{\pm} = |Z_{+}Z_{-}|A\sqrt{I}$$

where Z_+ and Z_- are the charges on the positive and negative ions, respectively. The constant A is given by the expression

A (in unit of in molal^{-1/2}) =
$$\sqrt{(2\pi N_A \rho_{sol}) \left(\frac{e^2}{4\pi\epsilon_o \epsilon_r kT}\right)}$$

where N_A = Avogadro number, $\rho_{solvent}$ = density of solvent (in unit of kg m⁻³), e = charge in C, ε_0 = permittivity of free space, ε_r = dielectric constant of solvent, k = Boltzmann's constant and T = absolute temperature in K.

- (i) Determine the A value in water at 25 °C. Given ρ_{water} = 997 kg m⁻³ at 25 °C, ϵ_0 = 8.854 ×10⁻¹² C² J⁻¹ m⁻¹ and ϵ_r = 78.54.
- (ii) From (i), calculate the ionic strength, I, if the mean activity coefficients, γ_{\pm} , for HCl and CaCl₂ are 0.964 and 0.880, respectively, using the Debye-Hückel limiting law.

(10 marks)

...5/-

SECTION B

4. (a) The table below shows the values for the molar solubility, s, of thallium iodate, TIIO₃, in solutions of potassium chloride, KCI, at 298 K:

-5-

m (KCI)/mol kg ⁻¹	0.005	0.01	0.02	0.05
s (TlIO₃)/mol kg⁻¹	0.00193	0.00200	0.00210	0.00232

Assuming that the dissociation of both salts was complete, calculate

- (i) the solubility product, K_{sp} , of the TIIO₃.
- (ii) the mean ionic activity coefficient, γ_{\pm} , for TIIO₃ in solution of 0.02 mol kg⁻¹ KCl.
- (iii) the A value using the Debye-Hückel limiting law.
- (iv) the solubility, s, of $TIIO_3$ in water.

(10 marks)

- (b) Ethanol and methanol form very nearly ideal solutions. At 20 °C, the vapour pressure of ethanol and methanol are 5.93 kPa and 11.83 kPa, respectively. Calculate
 - (i) the mole fractions of methanol and ethanol in a solution obtained by mixing 100 g of each.
 - (ii) the partial pressures and total vapour pressure of the solution.
 - (iii) the mole fraction of methanol in the vapour.

(7 marks)

-6-

...6/-

(c) Consider the following reaction and thermodynamic data:

CO(NH ₂) ₂ (aq) + H ₂ O	$(\ell) \rightarrow CO_2(g)$	+ 2NH₃(g)
---	------------------------------	-----------

Substance	∆ _f H°/kJ mol⁻¹	S°/J K ⁻¹ mol ⁻¹
CO(NH ₂) ₂ (aq)	-391.2	173.8
$H_2O(l)$	-285.9	69.96
$CO_2(g)$	-393.5	213.6
NH₃(g)	-46.19	192.5

- (i) Calculate the change in standard Gibbs free energy, ΔG° , for this reaction at 25 °C.
- (ii) Determine the minimum temperature for the reaction to be spontaneous.

(8 marks)

5. (a) A reasonable approximation to the vapour phase of krypton is given by

$$Log_{10}(P/Torr) = b - 0.05223(\frac{a}{T})$$

For solid krypton, a = 10065 K and b = 7.1770. For liquid krypton, a = 9377 K and b = 6.92387. Using this information, deduce

- (i) the triple point temperature and pressure.
- (ii) the $\Delta H_{vaporisation}$, ΔH_{fusion} and $\Delta H_{sublimation}$ of krypton.

(10 marks)

- (b) Air is a mixture of gases with the following mass percentage composition: $75.52\% N_2$, $23.15\% O_2$, 1.28% Ar and $0.046\% CO_2$.
 - (i) Determine the partial pressure of N_2 , O_2 , Ar and CO_2 when the total pressure is 1.100 atm.
 - (ii) Calculate the molar entropy of mixing, Δs_{mix} , for air at 1.100 atm and 25 °C in a 10-L container, assuming ideal-gas behaviour is obeyed.

(7 marks)

...7/-

(c) Consider the following cell:

$$\mathsf{Pt} \mid \mathsf{Fe} \mid \mathsf{Fe}^{2+} \mid \mathsf{Fe}^{2+}, \, \mathsf{Fe}^{3+} \mid \mathsf{Pt}$$

The temperature coefficient of emf, $\left(\frac{\delta E}{\delta T}\right)_P$, for the cell is 1.14 mV K⁻¹ at 273.15 K. Calculate

- (i) the change in entropy, ΔS° .
- (ii) the change in Gibbs free energy, ΔG° .
- (iii) the change in enthalpy, ΔH° .

Given that $E^{o}_{Fe^{3+}/Fe^{2+}}=0.771~V$ and $E^{o}_{Fe^{2+}/Fe}=-0.447~V.$

(8 marks)

UNIVERSITI SAINS MALAYSIA School of Chemical Sciences

	General	data	and	fundamental	constants
--	---------	------	-----	-------------	-----------

Quantity	Symbol	Value	Power of ten	Units
Speed of light	С	2.99792458	10 ⁸	m s⁻¹
Elementary charge	е	1.60218	10 ⁻¹⁹	С
Faraday constant	$F = N_A e$	9.64853	10 ⁴	C mol⁻¹
Boltzmann constant	k	1.38065	10 ⁻²³	J K ⁻¹
Mass of electron	m _e	9.10938356	10 ⁻³¹	kg
Gas constant	$R = N_A k$	8.31447		J K ⁻¹ mol ⁻¹
		8.31447	10-2	L bar K ⁻¹ mol ⁻¹
		8.20574	10-2	L atm K ⁻¹ mol ⁻¹
		6.23637	10	LTorr K ⁻¹ mol ⁻¹
Planck constant	h	6.62608	10 ⁻³⁴	Js
	<i>ћ = h/</i> 2п	1.05457	10 ⁻³⁴	Js
Avogadro constant	N _A	6.02214	10 ²³	mol⁻¹
Standard acceleration of free fall	g	9.80665		m s ⁻²

Conversion	factors	Useful relation		Unit relations
1 eV	1.60218 x 10 ⁻¹⁹ J 96.485 kJ mol ⁻¹	2.303 RT/F = 0.0591 V at 25 °C	Energy	1 J = 1 kg m ² s ⁻² = 1 A V s
	8065.5 cm ⁻¹		Force	1 N = 1 kg m s ⁻²
1 cal	4.184 J			
1 atm	1.013 bar 101.325 kPa 760 Torr		Pressure	1 Pa = 1 N m ⁻² = 1 kg m ⁻¹ s ⁻² = 1 J m ⁻³
1 cm ⁻¹	1.9864 x 10 ⁻²³ J		Charge	1 C = 1 A s
1 Å	10 ⁻¹⁰ m		Potential	1 V = 1 J C ⁻¹
1 L atm	101.325 J		difference	= 1 kg m ² s ⁻³ A ⁻¹

Atomic weights

	-						
AI	26.98	С	12.01	Fe	55.85	Р	30.97
Sb	121.76	Cs	132.92	Kr	83.80	K	39.098
Ar	39.95	CI	35.45	Pb	207.2	Ag	107.87
As	74.92	Cr	51.996	Li	6.941	Na	22.99
Ba	137.33	Со	58.93	Mg	24.31	S	32.066
Be	9.012	Cu	63.55	Mn	54.94	Sn	118.71
Bi	208.98	F	18.998	Hg	200.59	W	183.84
В	10.81	Au	196.97	Ne	20.18	Xe	131.29
Br	79.90	He	4.002	Ni	58.69	Zn	65.39
Cd	112.41	Н	1.008	Ν	14.01		
Ca	40.078		126.90	0	15.999		

-000000-