SULIT

Second Semester Examination 2020/2021 Academic Session

July 2021

KFT332 - Physical Chemistry II

Duration: 2 hours

Please check that this examination paper consists of EIGHT (8) pages of printed material before you begin the examination.

Instructions:

This paper has FIVE (5) questions in SECTIONS A and B. Answer all THREE (3) questions from SECTION A and at least ONE (1) question from SECTION B.

Answer each question on a new page.
If a candidate answers more than four questions, only the answers to the first four questions in the answer sheet will be graded.

Appendix: Fundamental constants in physical chemistry.

-2-

SECTION A

1. (a) Determine $\Delta \mathrm{S}$ if one mole of $\mathrm{N}_{2}(\mathrm{~g})$ is expanded from 20.0 L at 273 K to 300 L at 400 K . Assume that the molar heat capacity at constant pressure, $\overline{\mathrm{C}}_{\mathrm{P}}$, is $29.4 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and is independent of temperature.
(b) Show that
(i) $\Delta \overline{\mathrm{S}}=\overline{\mathrm{C}}_{\mathrm{P}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\mathrm{R} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$ for the change of one mole of an ideal gas from T_{1}, P_{1} to T_{2}, P_{2}, assuming that \bar{C}_{P} is independent of temperature.
(ii) $\mathrm{dH}=\mathrm{TdS}+\mathrm{VdP}$ starting from $\mathrm{H}(\mathrm{S}, \mathrm{P})$.
(iii) $\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{H}}=-\frac{1}{\mathrm{C}_{\mathrm{P}}}\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$ starting from $\mathrm{H}(\mathrm{T}, \mathrm{P})$.
(c) Starting from $\mathrm{H}=\mathrm{U}+\mathrm{PV}$, prove that the Joule-Thomson coefficient can be written as

$$
\mu_{\mathrm{JT}}=\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{H}}=-\frac{1}{\mathrm{C}_{\mathrm{P}}}\left[\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}}+\left(\frac{\partial(\mathrm{PV})}{\partial \mathrm{P}}\right)_{\mathrm{T}}\right]
$$

2. (a) Based on a graphical method, determine the partial molar volume of ZnCl_{2} in 1 molal ZnCl_{2} solution using the following data:

$\left[\mathrm{ZnCl}_{2}\right] / \mathrm{wt} . \%$	2	6	10	14	18
Density/g cm					
	1.0167	1.0532	1.0891	1.1275	1.1665

(8 marks)
(b) The vapour pressure of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ have the following values in the temperature range between their boiling points at 1 bar:

$\mathrm{T} /{ }^{\circ} \mathrm{C}$	79.4	88	94	100	110
$\mathrm{P}_{\text {benzene }} / \mathrm{bar}$	1.000	1.285	1.526	1.801	-
$\mathrm{P}_{\text {toluene }} /$ bar	-	0.508	0.616	0.742	1.000

(i) Determine the compositions of the vapour and liquid phases at each temperature.
(ii) Sketch the boiling point diagram.
(iii) If a solution containing 0.5 mole fraction of benzene and 0.5 mole fraction of toluene is heated to a specific temperature, the first vapour bubble will appear. Determine the temperature when the first vapour bubble appears and composition of the vapour.
(c) A container has a double wall where the wall cavity is filled with CO_{2} at 298 K and 1 atm . When the container is filled with liquid nitrogen at 100 K , the CO_{2} will freeze so that the wall cavity has a mixture of solid and vapour CO_{2} at sublimation pressure. Assume that the data for CO_{2} at 100 K is not available, but it is known that the sublimation pressure, $\mathrm{P}_{\text {sublimation, and enthalpy of }}$ sublimation, $\Delta \mathrm{H}_{\text {sublimation, }}$, for CO_{2} at $-90^{\circ} \mathrm{C}$ are 38.1 kPa and $574.5 \mathrm{~kJ} \mathrm{~kg}^{-1}$, respectively. Determine the pressure in the wall cavity at 100 K .
3. (a) The following emf values, E, were obtained at $25^{\circ} \mathrm{C}$ for the cell at various molalities, m , of LiCl :

$\mathrm{Pt}, \mathrm{H}_{2}(1$ bar $)$	$\mathrm{LiOH}(0.01 \mathrm{~m}), \mathrm{LiCl}(\mathrm{m})\|\mathrm{AgCl}(\mathrm{s})\| \mathrm{Ag}$				
$\mathrm{m} / \mathrm{mol} \mathrm{kg}^{-1}$	0.01	0.02	0.05	0.10	0.20
E / N	1.0498	1.0318	1.0076	0.9888	0.9696

Given that $\mathrm{E}_{\mathrm{AgCl} / \mathrm{Ag}}^{0}=0.2224 \mathrm{~V}$, calculate the ionic product of water, K_{w}.
(15 marks)
(b) In the Debye-Hückel limiting law, the relationship between the activity coefficient, $\gamma_{ \pm}$, and the ionic strength, I, of a dilute solution is

$$
\left.-\ln \gamma_{ \pm}=\mid \mathrm{Z}_{+} \mathrm{Z}_{-}\right\rfloor \mathrm{A} \sqrt{\mathrm{I}}
$$

where Z_{+}and Z_{-}are the charges on the positive and negative ions, respectively. The constant A is given by the expression

$$
\mathrm{A}\left(\text { in unit of in } \mathrm{molal}^{-1 / 2}\right)=\sqrt{\left(2 \pi N_{\mathrm{A}} \rho_{\mathrm{sol}}\right)\left(\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}} \mathrm{kT}}\right)}
$$

where $N_{A}=$ Avogadro number, $\rho_{\text {solvent }}=$ density of solvent (in unit of $\mathrm{kg} \mathrm{m}^{-3}$), $\mathrm{e}=$ charge in $\mathrm{C}, \varepsilon_{0}=$ permittivity of free space, $\varepsilon_{r}=$ dielectric constant of solvent, $\mathrm{k}=$ Boltzmann's constant and $\mathrm{T}=$ absolute temperature in K .
(i) Determine the A value in water at $25^{\circ} \mathrm{C}$.

Given $\rho_{\text {water }}=997 \mathrm{~kg} \mathrm{~m}^{-3}$ at $25^{\circ} \mathrm{C}, \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$ and $\varepsilon_{r}=78.54$.
(ii) From (i), calculate the ionic strength, I, if the mean activity coefficients, $\gamma_{ \pm}$, for HCl and CaCl_{2} are 0.964 and 0.880 , respectively, using the Debye-Hückel limiting law.

SECTION B

4. (a) The table below shows the values for the molar solubility, s , of thallium iodate, TIIO_{3}, in solutions of potassium chloride, KCl , at 298 K :

$\mathrm{m}(\mathrm{KCl}) / \mathrm{mol} \mathrm{kg}^{-1}$	0.005	0.01	0.02	0.05
$\mathrm{~s}\left(\mathrm{TIIO}_{3}\right) / \mathrm{mol} \mathrm{kg}^{-1}$	0.00193	0.00200	0.00210	0.00232

Assuming that the dissociation of both salts was complete, calculate
(i) the solubility product, $\mathrm{K}_{\text {sp }}$, of the TIIO_{3}.
(ii) the mean ionic activity coefficient, $\gamma_{ \pm}$, for TIIO_{3} in solution of 0.02 mol $\mathrm{kg}^{-1} \mathrm{KCl}$.
(iii) the A value using the Debye-Hückel limiting law.
(iv) the solubility, s, of TIIO_{3} in water.
(b) Ethanol and methanol form very nearly ideal solutions. At $20^{\circ} \mathrm{C}$, the vapour pressure of ethanol and methanol are 5.93 kPa and 11.83 kPa , respectively. Calculate
(i) the mole fractions of methanol and ethanol in a solution obtained by mixing 100 g of each.
(ii) the partial pressures and total vapour pressure of the solution.
(iii) the mole fraction of methanol in the vapour.
(c) Consider the following reaction and thermodynamic data:

$$
\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Substance	$\Delta_{\mathrm{t}} \mathrm{H}^{\circ} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\mathrm{~S}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{CO}^{-1}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{aq})$	-391.2	173.8
$\mathrm{H}_{2} \mathrm{O}(\ell)$	-285.9	69.96
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	213.6
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.19	192.5

(i) Calculate the change in standard Gibbs free energy, $\Delta \mathrm{G}^{\circ}$, for this reaction at $25^{\circ} \mathrm{C}$.
(ii) Determine the minimum temperature for the reaction to be spontaneous.
5. (a) A reasonable approximation to the vapour phase of krypton is given by

$$
\log _{10}(\mathrm{P} / \text { Torr })=\mathrm{b}-0.05223\left(\frac{\mathrm{a}}{\mathrm{~T}}\right)
$$

For solid krypton, $a=10065 \mathrm{~K}$ and $\mathrm{b}=7.1770$. For liquid krypton, $\mathrm{a}=9377 \mathrm{~K}$ and $b=6.92387$. Using this information, deduce
(i) the triple point temperature and pressure.
(ii) the $\Delta \mathrm{H}_{\text {vaporisation }} \Delta \mathrm{H}_{\text {fusion }}$ and $\Delta \mathrm{H}_{\text {subblimation }}$ of krypton.
(b) Air is a mixture of gases with the following mass percentage composition: $75.52 \% \mathrm{~N}_{2}, 23.15 \% \mathrm{O}_{2}, 1.28 \% \mathrm{Ar}$ and $0.046 \% \mathrm{CO}_{2}$.
(i) Determine the partial pressure of $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{Ar}$ and CO_{2} when the total pressure is 1.100 atm.
(ii) Calculate the molar entropy of mixing, $\Delta \mathrm{s}_{\text {mix }}$, for air at 1.100 atm and $25^{\circ} \mathrm{C}$ in a $10-\mathrm{L}$ container, assuming ideal-gas behaviour is obeyed.

-7-

(c) Consider the following cell:

$$
\mathrm{Pt}|\mathrm{Fe}| \mathrm{Fe}^{2+}\left|\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}\right| \mathrm{Pt}
$$

The temperature coefficient of emf, $\left(\frac{\delta \mathrm{E}}{\delta \mathrm{T}}\right)_{\mathrm{P}}$, for the cell is $1.14 \mathrm{mV} \mathrm{K}^{-1}$ at 273.15 K. Calculate
(i) the change in entropy, $\Delta \mathrm{S}^{\circ}$.
(ii) the change in Gibbs free energy, $\Delta \mathrm{G}^{\circ}$.
(iii) the change in enthalpy, $\Delta \mathrm{H}^{\circ}$.

Given that $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.771 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.447 \mathrm{~V}$.

UNIVERSITI SAINS MALAYSIA School of Chemical Sciences

General data and fundamental constants

Quantity	Symbol	Value	Power of ten	Units
Speed of light	c	2.99792458	10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
Elementary charge	e	1.60218	10^{-19}	C
Faraday constant	$F=N_{A} e$	9.64853	10^{4}	$\mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	1.38065	10^{-23}	$\mathrm{J} \mathrm{K}^{-1}$
Mass of electron	m_{e}	9.10938356	10^{-31}	kg
Gas constant	$R=N_{A} k$	8.31447		$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
		8.31447	10^{-2}	L bar K-1 mol^{-1}
		8.20574	10^{-2}	$\mathrm{L} \operatorname{atm~K}{ }^{-1} \mathrm{~mol}^{-1}$
		6.23637	10	LTorr K ${ }^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	6.62608	10^{-34}	J s
	$\hbar=h / 2 \pi$	1.05457	10^{-34}	J s
Avogadro constant	N_{A}	6.02214	10^{23}	mol^{-1}
Standard acceleration of free fall	g	9.80665		$\mathrm{m} \mathrm{s}^{-2}$

Conversion factors		Useful relation		Unit relations
$1 \mathrm{eV}$	$\begin{aligned} & 1.60218 \times 10^{-19} \mathrm{~J} \\ & 96.485 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	$\begin{gathered} \text { 2.303 RT/F } \\ =0.0591 \mathrm{~V} \text { at } 25^{\circ} \mathrm{C} \end{gathered}$	Energy	$\begin{aligned} & 1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \\ & =1 \mathrm{AVs} \end{aligned}$
	$8065.5 \mathrm{~cm}^{-1}$		Force	$1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$
1 cal	4.184 J			
1 atm	$\begin{aligned} & 1.013 \mathrm{bar} \\ & 101.325 \mathrm{kPa} \\ & 760 \text { Torr } \end{aligned}$		Pressure	$\begin{aligned} & 1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2} \\ & =1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2} \\ & =1 \mathrm{Jm}^{-3} \end{aligned}$
$1 \mathrm{~cm}^{-1}$	$1.9864 \times 10^{-23} \mathrm{~J}$		Charge	$1 \mathrm{C}=1 \mathrm{As}$
$\begin{aligned} & \hline 1 \AA \\ & 1 \mathrm{~L} \text { atm } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10^{-10} \mathrm{~m} \\ & 101.325 \mathrm{~J} \end{aligned}$		Potential difference	$\begin{aligned} & 1 \mathrm{~V}=1 \mathrm{JC}^{-1} \\ & =1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1} \end{aligned}$

Atomic weights

Al	26.98	C	12.01	Fe	55.85	P	30.97
Sb	121.76	Cs	132.92	Kr	83.80	K	39.098
Ar	39.95	Cl	35.45	Pb	207.2	Ag	107.87
As	74.92	Cr	51.996	Li	6.941	Na	22.99
Ba	137.33	Co	58.93	Mg	24.31	S	32.066
Be	9.012	Cu	63.55	Mn	54.94	Sn	118.71
Bi	208.98	F	18.998	Hg	200.59	W	183.84
B	10.81	Au	196.97	Ne	20.18	Xe	131.29
Br	79.90	He	4.002	Ni	58.69	Zn	65.39
Cd	112.41	H	1.008	N	14.01		
Ca	40.078	I	126.90	O	15.999		

-000Oooo-

