SULIT

Second Semester Examination 2020/2021 Academic Session

July 2021
KTT212 - Inorganic Chemistry II
Duration: 3 hours

Please check that this examination paper consists of FOURTEEN (14) pages of printed materials before you begin the examination.

Answer Five (5) questions only. SECTION A is COMPULSARY. Answer any TWO (2) questions from SECTION B.

Answer each question on a new page.
If a candidate answered more than five questions, only the answers to the first five questions in the answer sheet will be graded.

Appendix: Tanabe-Sugano Diagram
Flow chart for Determined Molecular Point Groups Character Tables

SECTION A

COMPULSORY questions.

1. (a) Determine the oxidation state, coordination number of the metal center and the name of the following complexes according to the IUPAC rules.
(i) $\mathrm{K}_{2}\left[\mathrm{Cd}(\mathrm{CN})_{4}\right]$
(ii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{3}$
(iii) $\mathrm{K}_{2}\left[\mathrm{OsCl}_{5} \mathrm{~N}\right]$
(10 marks)
(b) Explain Werner's Theory using $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ and $\mathrm{CoCl}_{3} .3 \mathrm{NH}_{3}$ as examples.
(c) A student treated aqueous solutions of $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} 2\right] \mathrm{Cl}$ with excess $\mathrm{AgNO}_{3}(a q)$ and $\mathrm{K}_{2}\left[\mathrm{TiCl}_{6}\right]$ with excess $\mathrm{AgNO}_{3}(\mathrm{aq})$ in separate experiments. Predict the student's observation in both experiments and explain.
(5 marks)
2. (a) Cobalt complexes $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ absorb at 430 nm and 650 nm , respectively. Determine
(i) the crystal field splitting Δ_{0} for both complexes in unit of Joule; and
(ii) the color of the metal.
(b) Find the LFSE in terms of D_{q} and calculate the spin-only magnetic moment (in unit of Bohr-magneton) for the following complexes:
(i) cis-diaqua-cis-dichloro-cis-difluorocobaltate(II) ion
(ii) trans-dichlorotetrakis(triphenylphosphine)nickel(II)
(iii) tris(bipyridine)ruthenium(II) ion
(iv) cis-dicyanobis(oxalato)manganate(II) ion
3. (a) Calculate the number of electrons in the following complexes using covalent model.

(ii)

(10 marks)
(b) The trans-effect is a measurable ground state effect observed in some square planar complexes.
(i) Describe how you would measure this effect in square planar $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}_{2}$ complex if you could not obtain an X-ray crystal structure.
(ii) Describe briefly how the trans-effect contributes to the variation of ground state energy.

SECTION B

Answer any TWO (2) questions.
4. (a) $\left[\mathrm{IrCl}\left(\mathrm{PMe}_{3}\right)_{3}\right]$ complex (where PMe_{3} is trimethylphosphine) is reacted, by a reaction known as 'oxidative addition', with Cl_{2} to form octahedral complexes.
i. Draw the isomers of the formed octahedral complexes.
ii. Provide the IUPAC name of the isomers in (i)
(b) Certain bacteria transport iron(III) into their cells using a compound known as enterobactin. The binding took place when the enterobactin is deprotonated. The formation constant for the iron(III)-enterobactin complex is about 10^{49}. Based on the given structure of enterobactin, provide a reason why the formation constant is so high.

(c) The molecule $\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]$ possesses a point group of $\mathrm{C}_{2 v}$.
i. Derive the reducible representation of $\Gamma_{\mathrm{Fe}-\mathrm{CO}}(\mathrm{Fe}-\mathrm{CO}$ as basic function).
ii. Demonstrate how the reducing formula can be applied to obtain the irreducible representations for $\mathrm{Fe}-\mathrm{CO}$ and $\mathrm{Fe}-\mathrm{Cl}$.
5. (a) Prove that the following reaction took place through inner sphere coordination mechanism.

$$
\begin{gathered}
{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}+\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}} \\
5 \mathrm{NH}_{3}
\end{gathered}
$$

(b) Suggest a pathway to indicate the transfer of an electron over the bridging ligand in (a).
(c) Describe briefly Molecular Orbital Theory based on the transition metal-ligand complexes with octahedral geometry.
(10 marks)
6. (a) Demonstrate that the product of K_{1} to K_{4} for the stepwise replacement of water in $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ by ammonia result in the expression for

$$
\beta_{4}=\frac{\left[\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\right]}{\left[\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}} .
$$

(10 marks)
(b) The electronic spectrum of $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is shown as follows:

i. Suggest the probable transitions for the two bands based on TanabeSugano diagram.
ii. Determine the values of Racah parameter, B and crystal field splitting energy, Δ_{0}.
7. (a) The ambidentate ligands in the coordination complex below bond through different ends to the metal center. Elaborate.

(b) Provide two (2) examples of metal complexes that contains carbon rings with extended π-systems. Determine the number of electrons according to ionic model that obey 18 electron rules.
(c) For each of the following molecules, provide
(i) symmetrical elements
(ii) point group

I
II

III

IV

TANABE-SUGANO DIAGRAM

2. d^{2} with $C=4.5 B$

3. d^{4} with $C=4.61 B$

4. d^{5} with $C=4.477 B$

5. d^{d} with $C=4.8 B$

6. d^{\prime} with $C=4.633 B$

7. d^{4} with $C=4.709 B$

Flow Chart for Determining Molecular Point Groups

Character Tables for selected point groups

C ${ }_{\text {s }}$	E	σ_{h}			C_{i}	E	i		
A^{\prime}	1	1	x,y, R	$\mathrm{x}^{2}, y^{2}, z^{2}, x y$	Ag	1	1	$\mathrm{R}_{v}, \mathrm{R}_{v}, \mathrm{R}_{2}$	$x^{2}, y^{2}, z^{2}, x y, x z, y z$
$\mathrm{A}^{\prime \prime}$	1	-1	$z, \mathrm{R}_{\chi}, \mathrm{R}_{\mathrm{v}}$	$y z, x z$	A_{u}	1	-1	x,y,z	

C_{7}	E	C_{2}		
A	1	1	z, R_{7}	$x^{2}+y^{2}, z^{2}$
B	1	-1	$x, y, \mathrm{R}_{x}, \mathrm{R}_{v}$	yz,xz

\mathbf{D}_{7}	E	$\mathrm{C}_{7}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$		
A_{2}	1	1	1	1		$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}, \mathrm{xy}$
B_{1}	1	1	-1	-1	z, Rz	xy
B_{2}	1	-1	1	-1	y, Ry	xz
B_{3}	1	-1	-1	1	x, Rx	yz

\mathbf{D}_{3}	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{3}$		
$\mathrm{~A}_{1}$	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	$\mathrm{z}_{2} \mathrm{R}_{7}$	
E	2	-1	0	$(\mathrm{x}, \mathrm{y}) ;\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yz}) ;$ $\left(\mathrm{x}^{2}-y^{2}, x y\right)$

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
	$\mathrm{~A}_{2}$	1	1	-1	-1	R_{7}
$\mathrm{~B}_{1}$	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{v}$	xz
	B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{v}$
				yz		

$\mathrm{C}_{3 \mathrm{y}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{7}	
E	2	-1	0	$(x, y),\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{v}\right)$	$\left(x^{2}-y^{2}, x y\right),(x z, y z)$

C_{Av}	E	$2 \mathrm{C}_{4}$	C_{2}	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\mathrm{d}}$		
A_{1}	1	1	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	1	-1	-1	R_{z}	
B_{1}	1	-1	1	1	-1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{~B}_{2}$	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(\mathrm{x}, \mathrm{y})\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{v}\right)$	$(\mathrm{xz}, \mathrm{yz})$

$\mathbf{C}_{\mathbf{7}}$	E	C_{2}	i	σ_{h}		
A_{g}	1	1	1	1	R_{y}	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}, \mathrm{xy}$
	B_{g}	1	-1	1	-1	$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$
A_{u}	1	1	-1	-1	z	
	B_{u}	1	-1	-1	1	x, y

$\mathrm{D}_{2 \mathrm{~b}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$	i	σ (xy)	$\sigma(x z)$	$\sigma(\mathrm{yz})$		
Ag_{g}	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{B}_{1 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	-1	R,	xy
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	R^{2}	xz
$\mathrm{B}_{3 \mathrm{~g}}$	1	-1	-1	1	1	-1	-1	1	R,	yz
A_{u}	1	1	1	1	-1	-1	-1	-1		
B1u	1	1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	y	
B_{34}	1	-1	-1	1	-1	1	1	-1	x	

$\mathbf{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	$2 \mathrm{~S}_{3}$	$3 \sigma_{\mathrm{v}}$		
A_{1}	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
	$\mathrm{~A}^{\prime}{ }^{\prime}$	1	1	-1	1	1	-1	R_{\checkmark}
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
	$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1	
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
	$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{v}, \mathrm{R}_{v}\right)$
			$(x z, y z)$					

$\mathrm{D}_{4 \mathrm{~b}}$	E	$2 \mathrm{C}_{4}$	C_{2}	$2 \mathrm{C}_{2}{ }^{\prime}$	$2 \mathrm{C}_{2}{ }^{\prime \prime}$	i	$2 \mathrm{~S}_{4}$	$\sigma_{\text {h }}$	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\text {d }}$		
$\mathrm{Alg}_{1 \mathrm{~g}}$	1	1	1	1	1	I	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{A}_{2 \mathrm{~g}}$	1	1	1	-1	-1	1	1	1	-1	-1	R,	
$\mathrm{B}_{1 \mathrm{~g}}$	1	-1	1	1	-1	1	-1	1	1	-1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	1	-1	1	-1	1		xy
Eg_{g}	2	0	-2	0	0	2	0	-2	0	0	($\mathrm{R}_{\mathrm{r}}, \mathrm{R}_{\mathrm{v}}$)	(xz, yz)
Alu	1	1	1	1	1	-1	-1	-1	-1	-1		
$\mathrm{A}_{2 \mathrm{u}}$	1	1	1	-1	-1	-1	-1	-1	1	I	z	
$\mathrm{B}_{1 \mathrm{u}}$	1	-1	1	1	-1	-1	1	-1	-1	1		
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	1	-1		-1	1	-1		
E_{u}	2	0	-2	0	0	-2	0	2	0	0	(x.y)	

$\mathrm{D}_{5 \mathrm{~h}}$	E	$2 \mathrm{C}_{5}$		$2 \mathrm{C} 5^{2}$		$5 \mathrm{C}_{2}$	$\sigma_{\text {h }}$			2 S		$5 \sigma_{\mathrm{v}}$		
$\mathrm{Al}_{1}{ }^{\prime}$	1		1	1		1	1			1		1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{A}_{2}{ }^{\prime}$	1		1	1		-1	1			1		-1	R,	
$\mathrm{E}_{1}{ }^{\prime}$	2		$\cos 72^{\circ}$	$2 \cos 144^{\circ}$		0	2	2co	72°	$2 \cos$		0	(x,y)	
$E_{2}{ }^{\prime}$	2		cos 144°	$2 \cos 72^{\circ}$		0	2	$2 \cos$	144°	$2 \cos$		0		($\mathrm{x}^{2}-y^{2}, x y$)
$\mathrm{Al}_{1}{ }^{\prime \prime}$			1	1		1	-1			-1		-1		
$\mathrm{A}_{2}{ }^{\prime \prime}$	1		1			-1	-1			-1		1	z	
$\mathrm{E}_{1}{ }^{\prime \prime}$	2	$2 \cos 72^{\circ}$		$\frac{1}{2 \cos 144^{\circ}}$		0	-2	-2co	72 ${ }^{\circ}$	-2cos		0	($\mathrm{R}_{\mathrm{v}}, \mathrm{R}_{v}$)	(xz, yz)
$\mathrm{E}_{2}{ }^{\prime \prime}$	2	$2 \cos 144^{\circ}$		$2 \cos 72^{\circ}$		0	-2	$-2 \cos 144^{\circ}$		$-2 \cos 72^{\circ}$		0		
D_{6}	E	$2 \mathrm{C}_{6}$	$2 \mathrm{C}_{3}$	C_{2}	$3 \mathrm{C}_{2}{ }^{\prime}$	$3 \mathrm{C}_{2}{ }^{\prime \prime}$	i	$2 \mathrm{~S}_{3}$	$2 \mathrm{~S}_{6}$	$\sigma_{\text {h }}$	$3 \sigma_{\text {d }}$	$3 \sigma_{\mathrm{v}}$		
$\mathrm{Alg}_{1 \mathrm{~g}}$	1	1	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{3}$
$\mathrm{A}_{2 \mathrm{~g}}$	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R	
$\mathrm{B}_{1 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		$x^{2}-y^{2}$
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		xy
$\mathrm{E}_{1 \mathrm{~g}}$	2	1	-1	-2	0	0	2	1	-1	-2	0	0	($\mathrm{R}_{v}, \mathrm{R}_{\mathrm{y}}$)	(xz,yz)
$\mathrm{E}_{2 \mathrm{~g}}$	2	-1	-1	2	0	0	2	-1	-1	2	0	0		
Alu	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
$\mathrm{A}_{2} \mathrm{u}$	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{1 \mathrm{u}}$	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
Elu	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x,y)	
$\mathrm{E}_{2 \mathrm{u}}$	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

$\mathrm{D}_{2 \mathrm{~d}}$	E	$2 \mathrm{~S}_{4}$	C_{3}	$2 \mathrm{C}_{3}{ }^{\prime}$	$2 \sigma_{\text {d }}$		
A_{1}	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	-1	R_{7}	
B_{1}	1	-1	1	1	-1		$\mathrm{x}^{2}-y^{2}$
B_{2}	1	-1	1	-1	1	z	xy
E	2	0	-2	0	0	(x,y); ($\mathrm{R}_{\mathrm{v}}, \mathrm{R}_{\mathrm{v}}$)	(xz,yz)

$\mathbf{D}_{3 \mathrm{~d}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	i	$2 \mathrm{~S}_{6}$	$3 \sigma_{\mathrm{d}}$		
$\mathrm{A}_{1 \mathrm{~g}}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
	$\mathrm{~A}_{2 \mathrm{~g}}$	1	1	-1	1	1	-1	R_{7}
E_{g}	2	-1	0	2	-1	0	$\left(\mathrm{R}_{\mathrm{r}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right) ;(\mathrm{xz}, \mathrm{yz})$
	A_{lu}	1	1	1	-1	-1	-1	
$\mathrm{~A}_{2 \mathrm{u}}$	1	1	-1	-1	-1	1	z	
	E_{u}	2	-1	0	-2	1	0	(x, y)

S_{4}	E	S_{4}	C_{2}	$\mathrm{~S}_{4}{ }^{3}$		
A	1	1	1	1	R_{7}	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
	B	1	-1	1	-1	z
E^{2}	1	$\pm \mathrm{i}$	-1	$-(\mathrm{i})$	$(\mathrm{x}, \mathrm{y}) ;\left(\mathrm{R}_{\mathrm{v}}, \mathrm{R}_{v}\right)$	$(\mathrm{xz}, \mathrm{yz})$

$\mathrm{T}_{\text {d }}$	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	6S4	$6 \sigma_{d}$		
A_{1}	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
A_{2}	1	1	1	-1	-1		
E	2	-1	2	0	0		$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
T_{1}	3	0	-1	1	-1	($\mathrm{R}_{\mathrm{v}}, \mathrm{R}_{\mathrm{v},}, \mathrm{R}_{2}$)	
T_{2}	3	0	-1	-1	1	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	(xz,yz.xy)

O_{b}	E	$8 \mathrm{C}_{3}$	$6 \mathrm{C}_{2}$	6C4	$\begin{gathered} 3 \mathrm{C}_{2} \\ \left(=\mathrm{C}_{4}{ }^{2}\right) \end{gathered}$	i	6S4	8S6	$3 \sigma_{h}$	$6 \sigma_{d}$		
$\mathrm{A}_{1 \mathrm{~g}}$	1	1	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathrm{A}_{2 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	1	1	-1		
Eg_{g}	2	-1	0	0	2	2	0	-1	2	0		$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
$\mathrm{T}_{1 \mathrm{~g}}$	3	0	-1	1	-1	3	1	0	-1	-1	($\mathrm{R}_{v}, \mathrm{R}_{v}, \mathrm{R}_{2}$)	
$\mathrm{T}_{2 \mathrm{~g}}$	3	0	1	-1	-1	3	-1	0	-1	1		(xz,yz,xy)
Alu	1	1	1	1	1	-1	-1	-1	-1	-1		
$\mathrm{A}_{2} \mathrm{u}$	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		
Tlu	3	0	-1	1	-1	-3	-1	0	1	1	($\mathrm{x}, \mathrm{y}, \mathrm{z}$)	
$\mathrm{T}_{2} \mathrm{u}$	3	0	1	-1	-1	-3	1	0	1	-1		

Appenidix B. Constants \& Useful Energy Conversions

Planck's Constant,
Boltzman's Constant, speed of light,

$$
\begin{aligned}
& \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s} \\
& \mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}=0.6950 \mathrm{~cm}^{-1} / \mathrm{K} \\
& \mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{gathered}
1 \mathrm{eV}=1.60219 \times 10^{-19} \mathrm{~J}=96.485 \mathrm{~kJ} / \mathrm{mol}=22.58 \mathrm{kcal} / \mathrm{mol}=8065.5 \mathrm{~cm}^{-1} \\
1 \mathrm{~cm}^{-1}=11.96 \mathrm{~J} / \mathrm{mol}=2.859 \mathrm{cal} / \mathrm{mol}=0.1240 \mathrm{meV}
\end{gathered}
$$

Some Direct Products Note that is some instances, g and u must be added ($\mathrm{gxg}=\mathrm{uxu}=\mathrm{g}$; gxu=u), some subscripts must be omited and ' and " must be added ('x' = " x" = '; ' x " =")

$\mathbf{D}_{2}, \mathbf{D}_{2 \mathbf{h}}$	A	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
A	A	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
$\mathrm{~B}_{1}$		A	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$
$\mathrm{~B}_{2}$			A	$\mathrm{~B}_{1}$
$\mathrm{~B}_{3}$				A

C_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$
$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$
$\mathrm{~A}_{2}$		$\mathrm{~A}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$
$\mathrm{~B}_{1}$			$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$
$\mathrm{~B}_{2}$				$\mathrm{~A}_{1}$

$\mathbf{C}_{3 v}, \mathbf{D}_{3}$, $\mathbf{D}_{\mathbf{3}}, \mathbf{D}_{\mathbf{3 h}}$	A_{1}	$\mathrm{~A}_{2}$	E
A_{1}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	E
A_{2}		$\mathrm{~A}_{1}$	E
E			$\mathrm{A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}$

C $\mathbf{4}$, $\mathbf{S}_{\mathbf{4}}$, $\mathbf{C}_{\mathbf{4 h}}$,			
A	A	B	E
B		A	E
E			$[\mathrm{A}]+\mathrm{A}+\mathrm{E}$

	$\begin{aligned} & \mathbf{C}_{4 \mathrm{v}}, \mathrm{D}_{\mathbf{4}}, \mathrm{D}_{\mathbf{2 d}}, \\ & \mathrm{D}_{\mathbf{4 h}} \end{aligned}$		A_{1}	A_{2}	B1	B_{2}	E				
		A_{1}	A_{1}	A_{2}	B_{1}	B_{2}	E				
		A_{2}		A_{1}	B_{2}	B_{1}	E				
		B_{1}			A_{1}	A_{2}	E				
		B_{2}				A_{1}	E				
		E					$\mathrm{A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{B}_{1}+\mathrm{B}_{2}$				
$\begin{aligned} & \mathbf{C}_{5 \mathrm{v}}, \\ & \mathbf{D}_{5}, \\ & \mathbf{D}_{5 \mathrm{~h}, 5 \mathrm{~d}} \\ & \hline \end{aligned}$							$\begin{aligned} & C_{6} \\ & C_{6 h} \end{aligned}$				
	A_{1}	A_{2}	E_{1}		E_{2}			A	B	E_{1}	E_{2}
A_{1}	A_{1}	A_{2}	E_{1}		E_{2}		A	A	B	E_{1}	E_{2}
A_{2}		A_{1}	E_{1}		E_{2}		B		A	E_{2}	E_{1}
E_{1}			$\mathrm{A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}_{2}$		$\mathrm{E}_{1}+\mathrm{E}_{2}$		E_{1}			$[\mathrm{A}]+\mathrm{A}+\mathrm{E}_{2}$	$2 \mathrm{~B}+\mathrm{E}_{1}$
E_{2}					$\mathrm{A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}_{1}$		E_{2}				$[\mathrm{A}]+\mathrm{A}+\mathrm{E}_{2}$

$\mathbf{C}_{6 \mathbf{v}}, \mathbf{D}_{\mathbf{6}}, \mathbf{D}_{\mathbf{6 h}}$	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	E_{1}	E_{2}
$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	E_{1}	E_{2}
$\mathrm{~A}_{2}$		$\mathrm{~A}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	E_{1}	E_{2}
$\mathrm{~B}_{1}$			$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	E_{2}	E_{1}
$\mathrm{~B}_{2}$				$\mathrm{~A}_{1}$	E_{2}	E_{1}
E_{1}					$\mathrm{~A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}_{2}$	$\mathrm{~B}_{1}+\mathrm{B}_{2}+\mathrm{E}_{1}$
E_{2}						$\mathrm{~A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}_{2}$

$\mathbf{O}_{\mathbf{h}}, \mathbf{T}_{\mathbf{d}}$	A_{1}	$\mathrm{~A}_{2}$	E	T_{1}	$\mathrm{~T}_{2}$
$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	E	T_{1}	$\mathrm{~T}_{2}$
$\mathrm{~A}_{2}$		$\mathrm{~A}_{1}$	E	T_{2}	$\mathrm{~T}_{1}$
E			$\mathrm{A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}$	$\mathrm{T}_{1}+\mathrm{T}_{2}$	$\mathrm{~T}_{1}+\mathrm{T}_{2}$
$\mathrm{~T}_{1}$				$\mathrm{~A}_{1}+\mathrm{E}+\left[\mathrm{T}_{1}\right]+\mathrm{T}_{2}$	$\mathrm{~A}_{2}+\mathrm{E}+\mathrm{T}_{1}+\mathrm{T}_{2}$
$\mathrm{~T}_{2}$					$\mathrm{~A}_{1}+\mathrm{E}+\left[\mathrm{T}_{1}\right]+\mathrm{T}_{2}$

Standard Valence Orbital H_{ii} values (eV)

Atom	ns	np	(n-1) d	n
H	-13.6			1
B	-15.2	-8.5		2
C	-21.4	-11.4		
N	-26.0	-13.4		
O	-32.3	-14.8		
F	-40.0	-18.1		
Si	-17.3	-9.2		3
P	-18.7	-14.0		
S	-20.0	-13.3		
CI	-26.3	-14.2		
Sc	-8.9	-2.8	-8.5	4
Ti	-9.0	-5.4	-10.8	
V	-8.8	-5.5	-11.0	
Cr	-8.7	-5.2	-11.2	
Mn	-9.8	-5.9	-11.7	
Fe	-9.1	-5.3	-12.6	
Co	-9.2	-5.3	-13.2	
Ni	-9.2	-5.2	-13.5	
Cu	-11.4	-6.1	-14.0	
Zn	-12.4	-6.5		
Ga	-14.6	-6.8		
Ge	-16.0	-9.0		
As	-16.2	-12.2		
Se	-20.5	-13.2		
Br	-22.7	-13.1		
Mo	-8.3	-5.2	-10.5	5
Ru	-10.4	-6.9	-14.9	
Rh	-3.09	-4.6	-12.5	
Pd	-7.3	-3.8	-12.0	
Sb	-18.8	-11.7		
I	-18.0	-12.7		
Te	-20.8	-13.2		6
W	-8.3	-5.2	-10.4	
Re	-9.36	-6.0	-12.7	
Os	-8.5	3.5	-11.0	
Pt	-9.1	-5.5	-12.6	
Au	-10.9	-5.6	-15.1	

