

Second Semester Examination 2020/2021 Academic Session

July 2021

KTT212 - Inorganic Chemistry II

Duration: 3 hours

Please check that this examination paper consists of **FOURTEEN (14)** pages of printed materials before you begin the examination.

Answer <u>Five (5)</u> questions only. **SECTION A** is **COMPULSARY.** Answer any **TWO (2)** questions from **SECTION B**.

Answer each question on a new page.

If a candidate answered more than five questions, only the answers to the first five questions in the answer sheet will be graded.

Appendix: Tanabe-Sugano Diagram

Flow chart for Determined Molecular Point Groups

Character Tables

SULIT [KTT212]

-2-

SECTION A

COMPULSORY questions.

1. (a) Determine the oxidation state, coordination number of the metal center and the name of the following complexes according to the IUPAC rules.

- (i) $K_2[Cd(CN)_4]$
- (ii) $[Co(H_2O)_6][Ag(CN)_2]_3$
- (iii) K₂[OsCl₅N]

(10 marks)

(b) Explain Werner's Theory using CoCl₃.4NH₃ and CoCl₃.3NH₃ as examples.

(5 marks)

(c) A student treated aqueous solutions of [Rh(NH₃)₄Cl₂]Cl with excess AgNO₃(aq) and K₂[TiCl₆] with excess AgNO₃(aq) in separate experiments. Predict the student's observation in both experiments and explain.

(5 marks)

- 2. (a) Cobalt complexes $[Co(CN)_6]^{3-}$ and $[CoF_6]^{3-}$ absorb at 430 nm and 650 nm, respectively. Determine
 - (i) the crystal field splitting Δ_0 for both complexes in unit of Joule; and
 - (ii) the color of the metal.

(8 marks)

- (b) Find the LFSE in terms of D_q and calculate the spin-only magnetic moment (in unit of Bohr-magneton) for the following complexes:
 - (i) cis-diagua-cis-dichloro-cis-difluorocobaltate(II) ion
 - (ii) *trans*–dichlorotetrakis(triphenylphosphine)nickel(II)
 - (iii) tris(bipyridine)ruthenium(II) ion
 - (iv) cis-dicyanobis(oxalato)manganate(II) ion

(12 marks) ...3/-

3. (a) Calculate the number of electrons in the following complexes using covalent model.

(10 marks)

- (b) The *trans*-effect is a measurable ground state effect observed in some square planar complexes.
 - (i) Describe how you would measure this effect in square planar Pt(PEt₃)₂Cl₂ complex if you could not obtain an X-ray crystal structure.
 - (ii) Describe briefly how the *trans*-effect contributes to the variation of ground state energy.

(10 marks)

SULIT [KTT212]

-4-

SECTION B

Answer any TWO (2) questions.

4. (a) [IrCl(PMe₃)₃] complex (where PMe₃ is trimethylphosphine) is reacted, by a reaction known as 'oxidative addition', with Cl₂ to form octahedral complexes.

i. Draw the isomers of the formed octahedral complexes.

ii. Provide the IUPAC name of the isomers in (i)

(5 marks)

(b) Certain bacteria transport iron(III) into their cells using a compound known as enterobactin. The binding took place when the enterobactin is deprotonated. The formation constant for the iron(III)-enterobactin complex is about 10⁴⁹. Based on the given structure of enterobactin, provide a reason why the formation constant is so high.

(5 marks)

(c) The molecule $[Fe(CO)_4Cl_2]$ possesses a point group of C_{2v} .

i. Derive the reducible representation of $\Gamma_{\text{Fe-CO}}$ (Fe-CO as basic function).

ii. Demonstrate how the reducing formula can be applied to obtain the irreducible representations for Fe-CO and Fe-Cl.

(10 marks)

5. (a) Prove that the following reaction took place through inner sphere coordination mechanism.

$$[Co(NH_3)_5CI]^{2+} + [Cr(H_2O)_6]^{2+} + 5H_2O \longrightarrow [Co(H_2O)_6]^{2+} + [Cr(H_2O)_5CI]^{2+} + 5NH_3$$

(6 marks)

(b) Suggest a pathway to indicate the transfer of an electron over the bridging ligand in (a).

(4 marks)

(c) Describe briefly Molecular Orbital Theory based on the transition metal-ligand complexes with octahedral geometry.

(10 marks)

6. (a) Demonstrate that the product of K_1 to K_4 for the stepwise replacement of water in $[Cu(H_2O)_4]^{2+}$ by ammonia result in the expression for

$$\beta_4 = \frac{[[Cu(NH_3)_4]^{2+}]}{[[Cu(H_2O)_4]^{2+}][NH_3]^4} \,.$$

(10 marks)

(b) The electronic spectrum of $[V(H_2O)_6]^{3+}$ is shown as follows:

- i. Suggest the probable transitions for the two bands based on Tanabe-Sugano diagram.
- ii. Determine the values of Racah parameter, B and crystal field splitting energy, Δ_{o} .

(10 marks)

...6/-

SULIT [KTT212]

-6-

7. (a) The ambidentate ligands in the coordination complex below bond through different ends to the metal center. Elaborate.

(5 marks)

(b) Provide two (2) examples of metal complexes that contains carbon rings with extended π -systems. Determine the number of electrons according to ionic model that obey 18 electron rules.

(5 marks)

- (c) For each of the following molecules, provide
 - (i) symmetrical elements
 - (ii) point group

(10 marks)

-000O00o-

...7/-

TANABE-SUGANO DIAGRAM

1. d^1 with C = 4.42B

2. d3 with C = 4.5B

3. d4 with C = 4.61B

4. d5 with C = 4.477B

5. de with C = 4.8B

7. d^* with C = 4.709B

6. d' with C = 4.633B

...9/-

Flow Chart for Determining Molecular Point Groups

Character Tables for selected point groups

Cs	Е	$\sigma_{\rm h}$			Ci
A'	1	1	x,y,R,	x^2,y^2,z^2,xy	Ag
A"	1	-1	z,R_x,R_v	yz,xz	Au

Ci	Е	i		
Ag	1	1	R_{y},R_{y},R_{z}	x^2,y^2,z^2,xy,xz,yz
$A_{\rm u}$	1	-1	x,y,z	

C ₂	Е	C ₂		
A	1	1	z,R,	$x^{2}+y^{2},z^{2}$
В	1	-1	x,y,R_x,R_y	yz,xz

ı	D ₂	Е	$C_2(z)$	$C_2(y)$	$C_2(x)$		
ı	Α	- 1	1	1	1		x^{2},y^{2},z^{2},xy
ı	\mathbf{B}_{1}	1	1	-1	-1	z,Rz	xy
ı	B_2	1	-1	1	-1	y, Ry	XZ
ı	B_3	1	-1	-1	1	x,Rx	yz

D ₃	E	2C ₃	3C ₂		
A ₁	1	1	1		$x^{2}+y^{2}, z^{2}$
A ₂	1	1	-1	z,R _z	
Е	2	-1	0	$(x,y);(R_x,R_y)$	(xz,yz); (x ² -v ² .xy)

C2v	E	C ₂	$\sigma_{\nu}(xz)$	$\sigma_{v}(yz)$		
A1	1	1	1	1	Z	x^2, y^2, z^2
A ₂	1	1	-1	-1	R _z	xy
\mathbf{B}_{1}	1	-1	1	-1	x,R _v	XZ
B_2	1	-1	-1	1	y,R _v	yz

C _{3v}	E	2C ₃	$3\sigma_{v}$		
A ₁	1	1	1	Z	$x^{2}+y^{2}, z^{2}$
A ₂	1	1	-1	R _z	
E	2	-1	0	$(x,y), (R_x,R_y)$	$(x^2-y^2,xy),(xz,yz)$

C _{4v}	E	2C4	C ₂	$2\sigma_{v}$	$2\sigma_d$		
A ₁	1	1	1	1	1	Z	$x^{2}+y^{2}, z^{2}$
A ₂	1	1	1	-1	-1	R_z	
\mathbf{B}_{1}	1	-1	1	1	-1		x^2-y^2
B ₂	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x,y)(R_x,R_y)$	(xz,yz)

C2h	Е	C ₂	i	$\sigma_{\rm h}$		
Ag	1	1	1	1	R,	x^{2},y^{2},z^{2},xy
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	R_x, R_y	xz, yz
Au	1	1	-1	-1	z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	-1	1	x, y	

D_{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	σ(xz)	σ(yz)		
Ag	1	1	1	1	1	1	1	1		x^2, y^2, z^2
B_{1g}	1	1	-1	-1	1	1	-1	-1	R_z	xy
B ₂ g	1	-1	1	-1	1	-1	1	-1	R_{ν}	XZ
B ₃ g	1	-1	-1	1	1	-1	-1	1	R _v	yz
$A_{\rm u}$	1	1	1	1	-1	-1	-1	-1		
B_{1u}	1	1	-1	-1	-1	-1	1	1	Z	
\mathbf{B}_{2u}	1	-1	1	-1	-1	1	-1	1	у	
B_{3u}	1	-1	-1	1	-1	1	1	-1	x	

...11/-

D_{3h}	E	2C ₃	3C ₂	$\sigma_{\rm h}$	2S ₃	$3\sigma_v$		
A ₁ '	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A2'	1	1	-1	1	1	-1	R,	
E'	2	-1	0	2	-1	0	(x,y)	(x^2-y^2, xy)
A ₁ "	1	1	1	-1	-1	-1		
A2"	1	1	-1	-1	-1	1	Z	
E"	2	-1	0	-2	1	0	(R_v,R_v)	(xz,yz)

D_{4h}	E	2C ₄	C ₂	2C2'	2C2"	i	2S ₄	σ_h	$2\sigma_{v}$	$2\sigma_d$		
A1g	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R_z	
$\mathbf{B}_{1\mathbf{g}}$	1	-1	1	1	-1	1	-1	1	1	-1		x^2-y^2
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_g	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
Alu	- 1	1	1	1	- 1	-1	-1	-1	-1	-1		
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Z	
$\mathbf{B}_{1\mathbf{u}}$	1	-1	1	1	-1	-1	1	-1	-1	1		
\mathbf{B}_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0	(x,y)	

D_{5h}	E	2C ₅	$2C_5^2$	5C ₂	σ_h	2S ₅	$2S_5^3$	$5\sigma_{v}$		
A1'	1	1	1	1	1	1	1	1		$x^{2+}y^{2}, z^{2}$
A2'	1	1	1	-1	1	1	1	-1	R,	
E ₁ '	2	2cos72°	2cos144º	0	2	2cos72°	2cos144°	0	(x,y)	
E2'	2	2cos144°	2cos72°	0	2	2cos144º	2cos72°	0		(x^2-y^2, xy)
A1"	1	1	1	1	-1	-1	-1	-1		
A2"	1	1	1	-1	-1	-1	-1	1	Z	
E1"	2	2cos72°	2cos144º	0	-2	-2cos72°	-2cos144°	0	(R_v, R_v)	(xz, yz)
E2"	2	2cos144°	2cos72°	0	-2	-2cos144°	-2cos72°	0		

D _{6h}	Е	2C ₆	$2C_3$	C_2	3C2'	3C2"	i	2S ₃	$2S_6$	σ_h	$3\sigma_d$	$3\sigma_{v}$		
A _{1g}	1	1	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A _{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R,	
B_{1g}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		x ² -y ²
B _{2g}	- 1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		xy
E _{1g}	2	1	-1	-2	0	0	2	- 1	-1	-2	0	0	(R_v,R_v)	(xz,yz)
E_{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0	,	
A _{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
A _{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
B_{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
E _{1u}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x,y)	
E_{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

D_{2d}	E	$2S_4$	C_2	2C ₂ '	$2\sigma_d$		
A1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A ₂	1	1	1	-1	-1	R_z	
\mathbf{B}_{1}	1	-1	1	1	-1		x^2-y^2
B_2	1	-1	1	-1	1	Z	xy
Ē	2	0	-2	0	0	$(x,y); (R_x,R_y)$	(xz,yz)

...12/-

D_{3d}	E	2C3	3C ₂	i	2S ₆	$3\sigma_d$		
A _{1g}	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A ₂ g	1	1	-1	1	1	-1	R,	
E_g	2	-1	0	2	-1	0	(R_v,R_v)	$(x^2-y^2,xy);(xz,yz)$
A_{1u}	1	1	1	-1	-1	-1	,	
A _{2u}	1	1	-1	-1	-1	1	Z	
Eu	2	-1	0	-2	1	0	(x,v)	

S_4	E	S ₄	C ₂	S_4^3		
Α	1	1	1	1	R_z	$x^{2}+y^{2}, z^{2}$
В	1	-1	1	-1	Z	x^2-y^2 , xy
E	1	±i	-1	-(_i)	$(x,y); (R_x,R_y)$	(xz,yz)

T_d	E	8C ₃	3C ₂	6S4	$6\sigma_d$		
A ₁	1	1	1	1	1		$x^2+y^2+z^2$
A ₂	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_1	3	0	-1	1	-1	(R_v, R_v, R_z)	
T ₂	3	0	-1	-1	1	(x,y,z)	(xz,yz.xy)

O _b	Е	8C3	6C2	6C4	3C ₂ (=C ₄ ²)		6S4	8S6	3σ _h	6σ _d		
Alg	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
A _{2g}	1	1	-1	-1	1	1	-1	1	1	-1		, ,
Eg	2	-1	0	0	2	2	0	-1	2	0		$(2z^2-x^2-y^2,x^2-y^2)$
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_v,R_v,R_z)	
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1	,	(xz,yz,xy)
Alu	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
$E_{\mathbf{u}}$	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x,y,z)	
T _{2u}	3	0	1	-1	-1	٩,	1	0	1	-1		

Appenidix B. Constants & Useful Energy Conversions

Planck's Constant, Boltzman's Constant,

 $\begin{array}{l} h = 6.626x10^{\text{-}34} \; \text{J-s} \\ k = 1.381x10^{\text{-}23} \; \text{J/K} = 0.6950 \; \text{cm}^{\text{-}1}\!/\text{K} \\ c = 2.998x10^8 \; \text{m/s} \end{array}$

speed of light,

 $1~eV = 1.60219~x10^{-19}~J = 96.485~kJ/mol = 22.58~kcal/mol = 8065.5~cm^{-1}\\ 1~cm^{-1} = 11.96~J/mol = 2.859~cal/mol = 0.1240~meV$

Some Direct Products Note that is some instances, g and u must be added (gxg=uxu=g; gxu=u), some subscripts must be omited and ' and " must be added ('x' = " x'' = '; ' x'' = ")

D2, D2h	Α	B ₁	B ₂	B ₃
A	Α	B ₁	B ₂	B ₃
B ₁		Α	B3	B ₂
B ₂			Α	B_1
B ₃				Α

C _{2v}	A ₁	A ₂	B ₁	B ₂
A ₁	A ₁	A ₂	B ₁	B ₂
A ₂		A ₁	B ₂	B_1
B_1			A ₁	A ₂
B ₂				A ₁

C _{3v} , D ₃ , D _{3d} , D _{3h}	A ₁	A ₂	E
A_1	A ₁	A ₂	E
A2		A ₁	E
E			A ₁ +[A ₂]+E

C ₄ , C _{4h} , S ₄	A	В	Е
A	Α	В	E
В		Α	Е
E			[A]+A+E

C _{4v} , D ₄ , D _{2d} , D _{4h}	A ₁	A ₂	B ₁	B ₂	Е
A ₁	A ₁	A ₂	B_1	B ₂	E
A2		A ₁	B ₂	B ₁	E
B_1			A ₁	A ₂	E
B ₂				A ₁	E
E					A ₁ +[A ₂]+B ₁ +B ₂

C _{5v} ,,				
C _{5v} ,, D ₅ , D _{5h,5d}				
$\mathbf{D}_{5h,5d}$	A ₁	A ₂	E ₁	E ₂
A1	A ₁	A ₂	E ₁	E ₂
A ₂		A ₁	E ₁	E ₂
E ₁			$A_1+[A_2]+E_2$	E ₁ +E ₂
E ₂				A ₁ +[A ₂]+E ₁

C ₆ , C _{6h}	A	В	E ₁	E2
Α	Α	В	E ₁	E ₂
В		A	E ₂	E ₁
E ₁			[A]+A+E ₂	2B+E ₁
E ₂				[A]+A+E2

C _{6v} , D ₆ , D _{6h}	A_1	A ₂	B_1	B ₂	E_1	E ₂
A_1	A ₁	A ₂	B_1	B ₂	E ₁	E ₂
A2		A ₁	B ₂	B ₁	E ₁	E ₂
B ₁			A ₁	A ₂	E ₂	E ₁
B_2				A ₁	E ₂	E ₁
E1					A ₁ +[A ₂]+E ₂	B ₁ +B ₂ +E ₁
E ₂						A ₁ +[A ₂]+E ₂

O_h, T_d	A ₁	A ₂	Е	T ₁	T ₂
A ₁	A ₁	A ₂	Е	T ₁	T ₂
A ₂		A1	Е	T ₂	T ₁
E			A ₁ +[A ₂]+E	T ₁ +T ₂	T_1+T_2
T ₁				$A_1+E+[T_1]+T_2$	A2+E+T1+T2
T ₂					A ₂ +E+T ₁ +T ₂ A ₁ +E+[T ₁]+T ₂

...14/-

Standard Valence Orbital H_{ii} values (eV)

Atom	ns	np	(n-1)d	n
Н	-13.6			1
В	-15.2	-8.5		
С	-21.4	-11.4		
N	-26.0	-13.4		2
O	-32.3	-14.8		
F	-40.0	-18.1		
Si	-17.3	-9.2		
P	-18.7	-14.0		3
S	-20.0	-13.3		
Cl	-26.3	-14.2		
Sc	-8.9	-2.8	-8.5	
Ti	-9.0	-5.4	-10.8	
V	-8.8	-5.5	-11.0	
Cr	-8.7	-5.2	-11.2	
Mn	-9.8	-5.9	-11.7	
Fe	-9.1	-5.3	-12.6	
Co	-9.2	-5.3	-13.2	
Ni	-9.2	-5.2	-13.5	4
Cu	-11.4	-6.1	-14.0	
Zn	-12.4	-6.5		
Ga	-14.6	-6.8		
Ge	-16.0	-9.0		
As	-16.2	-12.2		
Se	-20.5	-13.2		
Br	-22.7	-13.1		
Mo	-8.3	-5.2	-10.5	
Ru	-10.4	-6.9	-14.9	_
Rh	-3.09	-4.6	-12.5	5
Pd	-7.3	-3.8	-12.0	
Sb	-18.8	-11.7		
I	-18.0	-12.7		
Te	-20.8	-13.2		
W	-8.3	-5.2	-10.4	
Re	-9.36	-6.0	-12.7	6
Os	-8.5	3.5	-11.0	
Pt	-9.1	-5.5	-12.6	
Au	-10.9	-5.6	-15.1	